
 

Technical Assessment of High-Risk AI 
Systems:  State of Play and Challenges 
Introduction 

The European AI Regulation, also known as the EU AI Act (AIA), was established to provide a harmonised 
and horizontal legal framework for the use of AI models and systems in the European Union. Its primary 
goal is to maximise the benefits of AI technologies while minimising the risks associated with their use. 
The AIA classifies AI systems into various risk categories: prohibited AI, high-risk AI, low-risk AI, and 
minimal-risk AI. High-risk AI systems are subject to stringent technical and regulatory requirements. 

In addition to documentation obligations, transparency rules, data requirements, quality and risk 
management protocols, technical criteria, such as accuracy, robustness, cybersecurity or bias (in the AI 
Act covered with regard to data governance), are critical in the evaluation of AI systems. This 
whitepaper delves into these criteria, outlining their significance and challenges in their technical 
evaluation. 

In this paper, we explain the technical testing criteria accuracy, robustness and bias, and broadly discuss 
different methods to test AI systems w.r.t. these criteria.1 Furthermore, we outline challenges that arise 
when testing AI systems, arguing that, while testing these criteria is technically feasible, it crucially 
depends on the knowledge about the use case and domain in which the system is deployed. To this end, 
the TÜV companies can leverage their sector-specific expertise to successfully enable the adaption of 
AI technology in high-risk applications. 

What is Accuracy, Robustness and Bias? 

Accuracy in the context of the AIA refers to how well an AI system can deliver correct predictions (Art. 
15(1), EU AI Act). A system with high accuracy minimises errors or incorrect predictions, which is 
particularly crucial in safety-critical applications such as medical diagnostics or machinery. The AIA 
requires that high-risk AI systems are regularly tested and monitored to ensure that their accuracy 

 
1 Technical criteria related to cybersecurity are out of scope of this document. 
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remains at a high level. This includes the use of valid testing procedures and metrics to ensure that the 
models integrated into such systems perform reliably. 

Next, robustness refers to how resilient an AI system is to disturbances or changes in input data (Art. 
15(1), EU AI Act). A robust system must remain stable and reliable even under changing conditions or 
deviations in the data. This is crucial to prevent AI systems from being compromised by small errors or 
manipulations. The AIA therefore requires that AI systems are regularly tested for their robustness, 
particularly regarding their ability to function reliably even under adverse conditions. 

Finally, bias in the context of this paper refers to a consistent deviation in the model’s prediction, which 
can lead to systematic errors favouring certain outcomes over others (including, but not limited to, 
outcomes produced for certain user groups). This can occur due to statistical biases where estimators 
do not accurately reflect the true parameters, or model biases stemming from assumptions that 
oversimplify the underlying relationships in the data. Algorithmic biases can also skew results if the 
algorithm used to train or construct a model has inherent limitations that favour certain types of 
solutions. Generally, bias can lead to predictions that do not align with desired outcomes, making the AI 
system inaccurate and, thus, unreliable. While bias is mentioned in the AIA specifically in the context of 
data governance (Art. 10, EU AI Act), testing for bias in the sense of systematic model errors represents 
a criterion that not only requires inspection of the data at hand but also the model behaviour. These 
tests may, in turn, inform the data collection or preparation process. Notably, the AI Act does not specify, 
which measures should be used to detect, prevent and mitigate possible biases (Art. 10(2g), EU AI Act). 

Measuring Accuracy, Robustness and Bias 

Technical assessment of an AI system requires the computation of adequate performance metrics. The 
following section will present several metrics that are most commonly used to measure the 
performance of an AI system with respect to the criteria mentioned above. Notice that there exists a 
plethora of metrics, which will not be fully covered in this paper.  

First, metrics for accuracy are considered. One commonly used metric to assess the accuracy of an AI 
system is its precision, which measures the proportion of true positive predictions among all positive 
predictions. On the other hand, recall (or sensitivity) measures the proportion of true positive 
predictions of all actual positive cases. There also exist aggregated metrics such as the F1 score, which 
presents the harmonic mean of precision and recall, thereby balancing the two metrics. These metrics 
can be used to set requirements and/or reason about the performance of a given system. For example, 
an AI system diagnosing breast cancer must ensure a high F1 score to minimise both false negatives and 
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false positives. In the case of a spam filter, high precision ensures that legitimate emails are not wrongly 
marked as spam. 
 
When quantifying the robustness of an AI system, one can compute its adversarial robustness, out-of-
distribution robustness, robustness against noise or its robustness against input variations. Adversarial 
robustness measures the system’s resilience against deliberate input manipulations bounded by a 
distance metric capturing the difference between the original input and the adversarial example. Out-
of-distribution (OOD) robustness evaluates the system’s performance on real data points that lie 
outside the training distribution. Robustness against noise assesses performance stability when 
(domain-specific) noise is added to the input data. Lastly, robustness against input variations evaluates 
how well the system can cope with systematic variations of the input, such as rotation or changing 
brightness in the case of image data. These metrics are relevant in use cases ranging from autonomous 
driving, where systems must perform reliably in adverse weather conditions, to speech recognition, 
where robustness ensures accurate results e.g. in the presence of accents or background noise. 
 
Lastly, the presence of bias in an AI system can be detected using metrics that are similar to those used 
for measuring accuracy but, importantly, applied in a different context. The key difference to accuracy 
testing lies in the selection of the data instances or scenarios, which should represent the test cases 
for which we expect equal performance levels. Especially in applications that serve as tools for access 
control to social or economic benefits (e.g. recruitment systems), specialised metrics such as 
demographic parity, equal opportunity, and predictive equality can be used to assess whether different 
groups receive similar predictions (or benefits) from the model. 
 

Testing in Practice: Technical Challenges  

Testing an AI systems w.r.t. the criteria mentioned above raises several technical challenges. These 
challenges are amplified by further, more general issues, such as the lack of concrete guidelines and 
standards for AI testing or the ambiguity in legal terminology, which are not addressed in this paper.  
 
The technical challenges have implications for the complexity of the method used for computing a 
specific metric w.r.t. a given criterion. In this work, we heuristically characterise the complexity of a 
method by the degree of how well it can be automated and the degree of implementation efforts 
demanded by the method. An overview of this categorisation is presented in Figure 1. Note that in this 
context, automatability refers to the extent to which a testing process can be executed without human  
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intervention, relying instead on computational tools, predefined algorithms, or workflows. In contrast, 
processes that require significant human intervention and expertise, such as tailoring tests to specific 
domains, interpreting ambiguous results or setting custom parameters, are less automatable. In the 
following, we will further specify some of the challenges that arise from computing metrics for each 
testing criterion and the implications of these challenges for the complexity of the methods used. 
 
In essence, the task of testing for accuracy involves straightforward comparisons between predicted 
outputs and actual labels, which is computationally inexpensive and conceptually simple. Accuracy 
metrics are well-defined and standardised, and they typically only require labelled testing data and 

access to the system outputs. In addition, they have clear mathematical formulations; hence, no 
specialised methods or algorithms are needed. This makes the accuracy testing methods relatively easy 
to implement, as a simple routine or function can be used to compute relevant metrics. Furthermore, 
the process of testing can easily be automated, as it does not require manual intervention once the 
datasets are provided. The key challenge when testing for accuracy lies in obtaining high-quality testing 
data, which is representative of the task at hand, and in choosing the appropriate metrics. This is by no 
means a trivial task; however, we regard the provision of appropriate datasets and accuracy metrics as 
given for this analysis. 
 
While accuracy testing does not require simulating complex scenarios, this becomes imperative when 
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Figure 1:  Overview of testing methods and categorisation based on their complexity. In this context, complexity is 
characterised by means of the degree of automatability (x-axis) and degree of implementability (y-axis). 
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testing for robustness of an AI system. However, the complexity of these scenarios differs between 
different notions of robustness (e.g. adversarial robustness vs. robustness against environmental 
changes). Furthermore, it should be noted that different approaches exist to test for robustness, that 
is, one can use empirical or formal methods, where the former involves generating counterexamples 
and the latter seeks to obtain formal robustness guarantees using advanced reasoning or optimisation 
techniques. Testing for adversarial robustness in an empirical fashion is easy to automate due to the 
availability of well-defined metrics such as adversarial accuracy. Moreover, it involves generating 
adversarial examples and evaluating model performance, which can be fully scripted. However, it is 
slightly harder to implement than accuracy testing due to the need for designing and configuring 
adversarial attack methods, selecting appropriate parameters (e.g., perturbation magnitude, 
iterations), and ensuring coverage of diverse attack scenarios, all of which require a deeper 
understanding of adversarial techniques and computational trade-offs.  

On the other hand, testing for out-of-distribution (OOD) robustness and robustness against variations 
is easy to implement because both rely on straightforward processes: evaluating system performance 
on predefined OOD datasets or datasets with systematic variations (e.g., noise, transformations, or 
corruptions). Given such datasets, standard accuracy metrics can be used to measure robustness. 
However, automating these tests is conceptually challenging as it requires generating a wide range of 
OOD or perturbed datasets, which often involves domain-specific transformations or synthetic data 
augmentation.  

Unlike empirical methods, formal verification of robustness is both hard to implement and automate 
because it requires highly complex algorithms and tools to handle the non-linearity and high 
dimensionality of AI models. Additionally, robustness properties must be carefully defined based on the 
specific safety specifications of the system, which varies significantly across applications. In contrast, 
when testing for adversarial robustness, the property is more generic as it focuses on model behaviour 
within a defined perturbation range and does not require domain-specific adaptation. Once 
implemented, the verification method can be used across domains, making it easier to automate. 

Lastly, we discuss the complexity of testing potential bias in AI systems. Testing for bias is easy to 
implement because it relies on well-defined metrics such as common accuracy metrics or specialised 
metrics such as disparate impact, demographic parity, or equalised odds, which can be computed 
directly using labelled datasets. Bias metrics involve straightforward statistical comparisons between 
groups, making manual implementation relatively easy with adequate data at hand. However, bias 
testing is hard to automate because it often requires identifying and labelling the attributes used for 
defining relevant groups of data instances, which may not always be explicitly available or 
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straightforward to define. Additionally, bias is extremely context-dependent, especially when human 
individuals are affected by the outcomes, requiring human judgment to determine the appropriate 
metrics and thresholds for specific applications, making fully automated pipelines challenging to design 
and deploy. 

 
Conclusion: Technical AI Assessment needs Domain Experts  

The technical evaluation of AI systems is a cornerstone of compliance with the AI Act. Accuracy, 
robustness and bias are essential criteria that determine the safety, reliability, and trustworthiness of 
these systems. At the same time, several challenges exist with respect to the technical assessment of 
AI systems, especially when it comes to automation. These challenges make it difficult to design off-
the-shelf testing frameworks or software to perform automated tests of AI systems. 

This applies to the general inspection of the testing data or choice of appropriate performance metrics 
but is further amplified for criteria such as robustness or bias, where the former requires capturing 
relevant changes in the system environment and the latter requires the definition of what is considered 
an undesirable bias before testing can be performed. Thus, testing these criteria demands the 
involvement of domain experts from the respective area of use in the testing procedure.  

Considering this, the availability of knowledge about the specific use case and domain in which the AI 
system is deployed becomes a major bottleneck for those testing AI systems. With longstanding 
expertise in testing and certification of products in several high-risk domains, such as medical devices 
or machinery, the TÜV companies are well equipped to provide comprehensive testing schemes for AI-
based products used in high-risk applications. The central task is to integrate AI-specific testing 
methods, such as those outlined in this paper, into existing certification processes, and to adapt them 
to the use case at hand.   


